机器学习(4)-决策树
决策树
决策树是一种用于分类和回归问题的监督学习算法。它通过树状图的结构来表示和推断决策规则。每个内部节点表示一个特征或属性,每个分支代表一个决策规则,而每个叶节点表示一个类别标签或一个数值。
决策树的学习过程形成了一个递归的分治算法,其中每个节点都对应于一个特征,并且通过节点上的决策规则将数据集分割成更纯的子集。在决策树的构建过程中,选择最佳特征和分割数据的目标是提高每个节点的纯度,使得决策树在训练数据上达到最佳的拟合效果。
机器学习(4)-决策树
You need to set
install_url
to use ShareThis. Please set it in _config.yml
.